27 Comentários

  1. Ester

    Não consigo resolver a questão 2
    por favor se for possível me envie a resolução.

    Responder
  2. Ruan Vieira

    A questão 2 não seriam 1200 metros? se ele só que cercar uma parte.

    As diagonais do losango se dividem igualmente, ou seja, se uma tem 600 será partida em duas partes de 300 . Se a outra tem 800 será em duas de 400. Assim, formariam 4 triângulos de lados 500, 300 e 400 = 1200m

    Responder
    1. Thieres Machado

      Ruan, leia novamente o enunciado da questão, tenha atenção para a pergunta de fato. Se ainda tiver dúvida, comente. Abraço.

      Responder
  3. Camila

    Thieres estou com muita dúvida sobre a matéria de triângulos, polígonos e quadriláteros não consigo fazer nenhum exercício corretamente e tenho prova agora dia 21/11 estou muito apavorada com isso. Não tem uma forma mais simples sobre essa matéria minha professora já perdeu a paciência comigo. Me ajuda!!!

    Responder
    1. Thieres Machado

      Camila, assim é um pouco complicado saber em que ponto do assunto você está com dificuldades. A pessoa que pode mais lhe ajudar é seu próprio prof..Conversa com ela novamente, ou então com seus responsáveis se for o caso. Peça ajuda dos colegas ou até mesmo um outro prof. mas não desanime continue em frente, continue persistindo. Como dica, primeiro procure aprender o básico da matéria, com exemplos resolvidos. Sucesso.

      Responder
    1. Jonathan Zyzz

      ABCDE é pentágono possui 5 lados e 3 triângulos dentro dele, a soma do seus ângulos internos valem 540 graus, isso divido pelo total de seus lados da 108 graus, ele é um polígono regular então são todos iguais, CD possuem ângulos iguais 72 graus 108-c=180 ângulo raso, esse triângulo é isósceles então r+144=180 vale 36 graus. Vlw flw

      Responder
  4. Ketlen Evelin

    Poderia mostrar a resolução da questão 1 por favor?
    Obrigada!

    Responder
  5. Laura S. Ivashkov

    Olá, na questão 3 não seria a resposta 4/3 ao invés de 3/4? Uma vez que a questão pede a razão entre medida do triângulo (4) e do quadrado (3)

    Responder
    1. Thieres Machado

      Laura,

      muito obrigado por sua visita e comentário, já corrigimos!
      Tudo de bom.

      Responder
    1. Thieres Machado

      Lohane,

      muito obrigado pelo elogios. Desejo que lhe ajude muito.

      Sucesso.

      Responder
    1. Thieres Machado

      Ótimo, parabéns. Continue firme e seu objetivo.

      Tudo de bom.

      Responder
  6. Maria

    A 9 eu tenho no meu livro de matematica e esta 36 e ela foi corrigida e comentada eu não entendi pq o seu deu 32 me explica pf

    Responder
    1. Thieres Machado

      Maria,

      por acaso você viu o gabarito? A resposta da questão 9 é a letra C)36 e está correta.
      A partir do momento que você tentou fazer a questão, diga exatamente qual é a sua dúvida, assim poderei te ajudar mais.

      Valeu pela visita.

      Responder
    1. Thieres Machado

      Junior,

      muito obrigado pela visita! Faça bom aproveito.

      Abraço.

      Responder
    1. Thieres Machado

      Nayane,

      para resolver o exercício número 4 de forma simples e ligeira basta saber sobre o teorema da “Base Média do Triângulo”, uma parte desse teorema é o seguinte:

      Se um segmento tem extremidades nos pontos médios de dois lados de um triângulo, então:
      – ele é paralelo ao terceiro lado;
      – ele é metade do terceiro lado;

      No link abaixo tem um desenho para a situação do problema. Uma imagem postada aqui nos comentários iria ficar bem pequena, por isso o link e os devidos créditos para quem a construiu.

      Ver imagem para a solução do problema

      Veja a explicação abaixo, baseada no desenho do link acima.

      Como R e U são pontos médios, o segmento RU é base média do triângulo ABC, como AC é diagonal = 5, então RU = 5/2. O mesmo Raciocínio para TS = 5/2.
      Como R e S são pontos médios, o segmento RS é base média do triângulo BCD e BD é diagonal = 6, então RS vale metade (o mesmo raciocínio acima) de BD, logo RS = 3. Segue-se o mesmo raciocínio para TU = 3.

      Portanto o perímetro do quadrilátero RSTU = 5/2 + 3 + 3 + 5/2 = 11cm.

      Bem, vendo a imagem e sabendo o teorema da base média do triângulo, acho que ajuda na resolução.
      Caso ainda tenha dúvida, fique a vontade para comentar.

      Obrigado pela visita!

      Responder
    1. Thieres Machado

      Alessandra,

      sendo o triângulo BCE equilátero (três lados com mesma medida) e observe que BE = BC é lado do triângulo e do quadrado, então
      BE = BC = BA (também lado do quadrado).

      Agora, veja que BE e BA (mesmas medidas) são os lados do triângulo ABE, portanto ABE é triângulo isósceles(dois lados com medidas iguais).

      Sendo ABE triângulos isósceles (BE = BA) temos que o ângulo AEB tem a mesma medida do ângulo BAE (ângulo com vértice em A).

      Como no triângulo equilátero cada ângulo interno mede 60° e no quadrado 90°, logo o ângulo ABE do triângulo ABE vale 30°
      (90° – 60° = 30°). Daí, temos no triângulo ABE a soma dos ângulos internos:

      AEB + BAE + ABE = 180°
      como AEB = BAE e chamando-os de x, temos:

      x + x + 30° = 180°
      2x = 150°
      x = 75°

      Portanto, x = AEB = 75°.

      Espero que tenha entendido, caso ainda tenha dúvida fique a vontade para tornar a perguntar.

      Tudo de bom!

      Responder
      1. Guilherme

        Boa noite, eu gostaria de saber, sob qual teoria, você afirmou que a medida do ângulo BAE tem o mesmo valor que AEB.

        Responder
        1. Thieres Machado

          Guilherme, explicamos isso na resolução. Estude-a novamente. Escreva. Vamos lá campeão! Abraço.

          Responder

Deixe uma resposta

O seu endereço de email não será publicado Campos obrigatórios são marcados *